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Abstract—Many complex information needs that arise in
biomedical disciplines require exploring multiple documents
in order to obtain information. While traditional information
retrieval techniques that return a single ranked list of docu-
ments are quite common for such tasks, they may not always be
adequate. The main issue is that ranked lists typically impose a
significant burden on users to filter out irrelevant documents.
Additionally, users must intuitively reformulate their search
query when relevant documents have not been not highly
ranked. Furthermore, even after interesting documents have
been selected, very few mechanisms exist that enable document-
to-document transitions. In this paper, we demonstrate the
utility of assertions extracted from biomedical text (called
semantic predications) to facilitate retrieving relevant docu-
ments for complex information needs. Our approach offers an
alternative to query reformulation by establishing a framework
for transitioning from one document to another. We evaluate
this novel knowledge-driven approach using precision and
recall metrics on the 2006 TREC Genomics Track.

Keywords-semantic predications, question answering, back-
ground knowledge, literature-based discovery, text mining

I. INTRODUCTION

Many scientific researchers are interested not only in
whether things are connected, but how they are connected
and the effects of various physiological, environmental,
chemical and other conditions. In the biomedical domain,
evidence for Literature-Based Discovery (LBD) arising from
such complex information needs, comes from Don R. Swan-
son’s scientific discoveries. Through extensive searching,
exploring, and manual perusal of biomedical literature,
Swanson hypothesized that 1) patients suffering from Ray-
naud’s Syndrome “might benefit from dietary fish oils rich in
eicosapentaenoic acid” [1] and that 2) migraine headaches
are linked to magnesium deficiency [2]. However, Swan-
son’s intensive manual approach to open-domain complex
information needs will not scale in today’s information age.
PubMed alone indexes over 20 million biomedical articles.
Instead, a hyperlink-driven approach, as evidenced by the
World Wide Web (WWW), has become the simplest and
quickest way of finding information. Nearly 50% of all
queries on the web are informational [3].

While effective in many search scenarios, using tradi-
tional web-centric approaches to satisfy complex informa-
tion needs in scientific literature presents many challenges.
The main issue is that while scientific documents may be

inherently linked through a hyperlinked citation network,
their actual content is almost always devoid of links. This
absence of a mechanism for linking content is contrary
to the “memory extender (or memex) vision” outlined by
Vannevar Bush in 1945 [4]. Bush explained that the human
brain navigates an information space using associations. He
noted that “With one item in its grasp, it snaps instantly to
the next that is suggested by the association of thoughts,
in accordance with some intricate web of trails carried by
the cells of the brain.” This process, called trail blazing,
will likely be disrupted if annotations that allow transitions
among documents based on content are not adequately
provided [5].

The second issue is that the few attempts at linking scien-
tific content through semantic annotations [6]–[8], have not
been widely adopted. Instead, users still largely engage in
the two-step process of 1) searching for relevant documents,
then 2) sifting through large volumes of content for actual
information relevant to their interests. This is known as the
search-and-sift paradigm [5] and is unsuitable for search
when answers span multiple documents. Consider for ex-
ample, the question: “How do mutations in the Presenilin-1
(PS1) gene affect Alzheimer’s disease (AD)?” The complete
answer to this question spans several documents. Potentially,
each document discusses a different aspect of how a PS1
mutation affects AD. For example, it has been reported in
two PubMed documents that:

. . . mutations in PS1 lead to Alzheimer’s disease by
increasing the extracellular levels of [amyloid peptide 42]
A42. (Source: PMID10652366)

. . . familial early onset Alzheimer’s disease is caused
by point mutations in the amyloid precursor protein gene
on chromosome 21, in the presenilin 2(PS2)1 gene on
chromosome 1, or, most frequently, in the presenilin 1(PS1)
gene on chromosome 14 . . . (Source: PMID9013610)

A scientist who poses a query such as “Presenilin1 chro-
mosomes,” will be frustrated by a system that does not
return both documents. Obviously, such a situation can arise
specifically due to syntactically different manifestations of
the same concept. PS1 and Presenilin1 are the same concept
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semantically but not lexically. Although both fragments
contain the common phrase “Alzheimer’s disease,” some
amount of searching-and-sifting and also query reformula-
tion would be required to obtain all relevant documents. In
fact, query reformulation itself can be problematic. It has
been well established that users perform better at recognition
than recall [9]. It is easier to identify an actor in a movie, if
shown photographs of actors rather than arbitrarily guessing.

We therefore envisage retrieval of relevant documents
for complex information needs, under circumstances where
complementary or alternative approaches to query refor-
mulation are available. In particular, suppose fragment 2
above was retrieved first; then since it is known that PS1
and Presenilin1 are the same concept semantically, fragment
1 and fragment 2 can be connected using the assertion
that 1) chromosome 14 finding site of Presenilin1 from
fragment 2 and the assertion that 2) PS1 associated with
Alzheimer’s disease from fragment 1. These two statements
(chromosome 14 finding site of Presenilin1 and PS1 asso-
ciated with Alzheimer’s disease) are examples of semantic
predications. If such predications can be extracted from
scientific literature, they can be used as an alternative to hy-
perlinks. While this connection between the two fragments
does not directly answer our question, it intuitively leads to
documents that do.

Semantic predications therefore offer a mechanism for
transitioning from one document to another, while also serv-
ing as contextual hints during exploration. Fundamentally
the predications enable a paradigm shift away from the
classical bag-of-words document model, to a predication-
based model in which documents can be perceived as a
set-of-predications that capture a semantic summary of the
document. This view establishes the basis for a completely
graph-based simulation of exploration of a document space.
The idea is that by traversing the predications connecting the
documents in the document space we can mimic user activity
in a real world system. Such automation is significant,
because it bears significance in finding implicit connections
among predications. This is quite an intriguing prospect
considering Swanson’s manually driven discoveries [1], [2],
[10], [11].

The predication-based framework can therefore be used
for Information Retrieval (IR) or Question Answering (QA),
by exploiting the presence of predications in documents. In
this work, we take a first step by using the predications to
show that documents that answer complex information needs
can be connected. Hence, while fundamentally addressing
QA, we also highlight the implications of this approach on
LBD. Herein lies the novelty in our contribution.

We describe our approach in Section II, then discuss the
dataset to which our experiments were applied in Section
III. The algorithm used to generate our results is covered
in Section IV and we describe the experimental results in
Section V. Section VI covers related work.

II. APPROACH

We formulate the problem of finding documents that sat-
isfy complex information needs using semantic predications,
as one of reachability.

A. Reachability

Reachability [12] refers to the existence of a path from
one vertex to another in a directed graph. Such a path may
be obtained using ordered pairs of vertices. In Figure 1 for
example, vertex (f) is reachable from vertex (a) through
the set of ordered pairs (a,b),(b,c),(c,d),(d,e),(e,f). In this
work, our approach is to exploit the labeled edges between
vertex pairs, which together form semantic predications,
to establish reachability of documents. Hence, we extend
the notion of vertex reachability to document reachability.
Specifically, a document dj is reachable from a document di
if dj contains an entity vertex (vj) and di contains another
entity vertex (vi) such that there is a path from vertex (vi)
to vertex (vj) using the semantic predications. In Figure 1,
document d8 is reachable from d1 using the ordered pairs
above, consequently covering all documents {d1 . . . d8}.

In order to demonstrate document reachability, our system
requires four components: 1) a corpus of documents, 2) a
set of questions and corresponding answer documents 3) a
graph of predications (hereafter predications graph) and 4)
an algorithm for reaching relevant documents. We selected
the 2006 Text REtrieval Genomics Corpus (TREC) Track1,2,
which focusses on “retrieval of passages” as well as full
text documents given various questions, to demonstrate our
approach. In order to avoid ambiguity, we use the term
text item instead of document, where a text item may be a
paragraph or the concatenation of paragraphs. Details of the
dataset and experiments are covered in Sections III and V.
Next we discuss the construction of the predications graph.

Figure 1. Document Reachability Framework

B. Predications Graph

Recall that a predication is an assertion extracted from
the biomedical text. Since assertions are also triples, a
predication can therefore be expressed in the canonical
subject→predicate→object form or as equally in infix
form as predicate(subject, object) according to first-order

1TREC - http://ir.ohsu.edu/genomics/2006protocol.html
2Experiments-http://knoesis.wright.edu/researchers/delroy/trec2006.html



logic. In either case, the predicate expresses a relationship
the subject and object. Consequently, a text item can there-
fore be represented both in terms of its natural language
content as well as a set-of-predications using formal nota-
tion. Using set notation, let S(di) be the set of predications
associated with text item di. If t denotes a predication and
D is the set of text items {d1, d2 . . . , dn} then,

For any t = (st, pt, ot), let D(t) = {d | t ∈ S(d)} (1)

be the set of corresponding text items that contain the pred-
ication t and S(D) be the set of all predications associated
with text items in D. That is,

S(D) =

|D|⋃
i=0

S(di). (2)

The predications in S(D) for a text item set D naturally
form a directed labeled graph denoted GS(D) in which the
subject and object of each predication is a node and the
predicate is a labeled edge from subject to object. This graph
is called the predications graph. The ability to connect two
nodes in this graph forms the basis of reachability. In terms
of document reachability, text item di is reachable from dj
if and only if there exist predications (si, pi, x) ∈ S(di) and
(x, pj , oj) ∈ S(dj). That is, there are predications that share
an entity which plays the role of an object in the predication
from di and the role of a subject in the predication from dj .
Therefore, a text item dj is reachable from di if and only if
there exists a path from di to dj .

C. Text Item Exploration

In a real world implementation of our approach, a user
would formulate a search query consisting of an initial
starting concept c (e.g. “Presenilin1 Gene” or “Alzheimer’s
disease” for the question in Section I). The system would
then return a set of relevant text items for c, without much
emphasis on ranking. Each text item would be annotated
with the predications it contains. Upon selecting a predica-
tion t1, in some text item d1 (presumably for which the start
node c is the subject), the system would return the set D(t1),
in which each text item directly contains the predication t1.
Upon selecting another predication t2 in another text item
d2 the system would then return the set D(t2), in which
each text item directly contains the predication t2.

This sequence of activity is equivalent to traversing the
predications graph GS(D) and Figure 1 captures this equiva-
lence between an implemented system and our predication-
based simulation. In a real system, this predication-based
exploration would enable three important purposes:

1) Results from recent literature will be available for
browsing based on the presence of selected predica-
tions within them. The more prior domain knowledge
a user has, the more selective she can be in choosing
the next option to traverse. Novice users can explore

different predications in a breadth first manner and
learn more about the domain before digging deeper.

2) Exploration of a document space becomes a more
enriching experience, since the provenance of a pred-
ication enables users to readily assess the quality of
information by examining the surrounding context of
the text item in which the predication appears.

3) Users can achieve LBD by discovering new connec-
tions between entities based on predications in paths.

In our simulation, we selected a modified depth-first search
(MDFS) algorithm (covered in Section IV) for predications
graph traversal, along with various heuristics for pruning.

D. Background Knowledge and Knowledge Abstraction

The predication-based exploration outlined in Section II-C
has the limitation that it heavily relies on the predications
graph. Since the predications graph only consists of as-
sertions extracted from natural language using linguistics-
based techniques (using a tool called SemRep [13]), the
quality of the predication extraction could be a bottleneck.
Furthermore, even if the predication extraction quality is
high, it is possible that the predications necessary to connect
various text items may not be expressed as such in the text.

In Figure 1 for example, if documents d3 and d4 do
not contain the predication represented by (c,d), then the
previously covering path ρc=(a,b),(b,c),(c,d),(d,e),(e,f) de-
composes into two paths: ρ1=(a,b) of length 1, that spans
only 2/8 documents (d1, d2), and ρ2=(d,e),(e,f) that covers
4/8 documents (d5, d6, d7, d8). Documents d3 and d4 are
now unreachable. To address such cases, background knowl-
edge can be used to connect disjoint text items by provid-
ing additional knowledge from external sources. Revisiting
the two fragments in Section I, fragment 2 contains an-
other predication pf2=(chromosome 21q21, finding site of
amyloid precursor protein gene) and fragment 1 contains
the predication pf1=(amyloid peptide 42, associated with,
Alzheimer’s disease). However, since amyloid beta pep-
tide is not the same concept as amyloid precursor protein
gene the two fragments cannot be connected directly. It
is known however, that pkb=(amyloid precursor protein
gene, produces, amyloid peptide) from external biomedical
knowledge. Therefore, we can leverage this knowledge to
make a logical leap from fragment 2 to fragment 1. This is an
example of knowledge abstraction (specifically, associative
abstraction, since only associative predicates are used in
making the logical leap between two concepts). In this work
we leverage associative abstractions in which two concepts
are connected by an intermediate concept. That is, we show
preference for scenarios in which an entity (b) connects
entities (a) and (c), through a common relationship. For
example, if the entity “cell transformation” is a terminal
point our traversal, a concept such as “cell fusion,” which is
similar to cell transformation is a viable alternative. Both
concepts are known to coexist with cell physiology. We



also leverage hierarchical abstraction in which two concepts
are linked through hierarchical predicates including is a,
parent of, child of, etc.

III. DATASETS

We conducted an evaluation of our approach using ques-
tions from the TREC 2006 Genomics Track. The entire
searchable corpus for the TREC challenge has 162,259
full text documents, segmented into paragraphs using html
paragraph <p></p> tags. Each paragraph has a beginning
byte offset and the length in bytes of its enclosed text. As
mentioned in Section II, we refer to an individual paragraph
(also called a legal span) or a collection of paragraphs
belonging to the same document as a text item. We extracted
12,641,116M (M=million) such paragraphs from the entire
corpus. In the subset of the 1,381 answer documents for the
26 questions, we obtained 121,162 paragraphs. We selected
only this subset of answer documents for our simulation, to
avoid computational limitations.

We performed two experiments (detailed in Section V).
In the first experiment, we constructed a single predi-
cations graph (using the Jung Java3 library), containing
all predications from all text items in the subset. This
experiment measured the ability to reach the documents
in any given answer set, without regard for the actual
answer paragraphs individually. To improve the running
time of the DFS traversal, we represented each of the
1,381 answer documents as the concatenation of only their
answer paragraphs instead of using all paragraphs in the
document. This predications graph contained more than
13,000 unique predications, 2,105 vertices and 16,942 edges.
Nearly 240 documents however, yielded no predications, as
SemRep [13] either could not parse them or they did not con-
tain any predications. In the second experiment, we created
26 separate predications graphs; one for each question. This
experiment assessed the ability to reach the 3,461 correct
paragraphs within the 1,381 answer documents. Evidently,
some paragraphs answer multiple related questions.

We selected the biomedical knowledge repository (BKR)
as the external knowledge base for associative and hier-
archical knowledge abstractions. The BKR contains more
than 8M relations from the UMLS Metathesaurus and over
13M SemRep predications, extracted from the abstracts of
more than 18.5M biomedical documents published between
2000−2010.

IV. MDFS ALGORITHM

As outlined in Section II, the overall approach to the
reachability experiments aims to traverse the predications
graph using DFS, exploring every edge, and aggregating the
set of answer text items that have been reached at each step.
Traversal continues until all answer text items have been

3Jung Java Library - http://jung.sourceforge.net/

found or the predications graph traversal terminates on some
base condition (discussed below).
The algorithm is as follows: for a given question Q and some
starting point c in the predications graph GS(D) and an text
item answer setAQ for the question, Algorithm 1 recursively
visits each predication in the set. If E(c) represent the
predications whose subject is c. That is:

E(c) = {p : p is a predication with c as the subject}.

The algorithm visits each predication in E(c) in steps 2-4.

Algorithm 1 MDFS(Concept c, Set AQ, Graph GS(D))
1: c.visited := true
2: for all predications p ∈ E(c) do
3: MDFS-VISIT(p, ρ = ([ ], ∅, 0), AQ, GS(D))
4: end for

During the visit we record 1) the path traversed from
the root node, 2) the corresponding text items found, and
3) the associated precision and recall. Thus, the second
parameter ρ, in the recursive MDFS-VISIT procedure (Al-
gorithm 2) is a PathObject with three components: ρ=(path,
coveredSet, PRvalues). The parameter path, is the sequence
of predications from the root to the edge traversed before
the recursive call. coveredSet is the set of text items reached
in current path. PRvalues are precision and recall values
based on coveredSet, the answer set AQ, and total number
of unique text items containing the predications in the path.
In Algorithm 2, the predication p is added to the path
component of the path object ρ in line 1. In lines 2–4,
new text items are determined based on already reached
answers, the answer set AQ, and the set D(p) (from Eq. (1)).
The covered text items set is updated. In lines 5–7, if all
answers are found, the algorithm terminates and stores the
path object. In lines 8–9, nodes already explored or being
explored are avoided. The algorithm marks the object of p
(line 10) as visited before finding successors of predication p
denoted Sp in line 11. Predications successors are obtained
by selecting all predications from GS(D) that contain the
object of predication p as their subject. In steps 12–14, if
no successors exist for p in GS(D) or no new answer text
items are found, then the algorithm resorts to abstraction (see
Section II-D). In lines 15–17, each predication successor
is recursively visited. Finally, after a node is completely
explored, the path from the root up to the current node is
recorded in line 18. We discuss the two experiments to which
this algorithm was applied in the following section.

V. EXPERIMENTAL RESULTS

Since the output of the reachability algorithm is a set
of paths PQ, there is no single ranked list of documents.
Instead, for each question there is an optimal path containing
some number of relevant documents with some best preci-
sion and recall. In the case of precision, we measure at each



Figure 2. Precision-Recall using Associative Abstraction

Algorithm 2 MDFS-VISIT(predication p, PathObject ρ, Set
AQ, Graph GS(D))

1: add predication p to ρ.path
2: newAnswers := (AQ − ρ.coveredSet) ∩D(p)
3: Update ρ.PRvalues for ρ.path using newAnswers
4: ρ.coveredSet := newAnswers ∪ ρ.coveredSet
5: if (ρ.coveredSet = AQ) then
6: Add ρ to PQ and return
7: end if
8: Let po be the object of p.
9: if (po.visited = true) then return end if

10: po.visited := true
11: Get successor predications Sp := E(po).
12: if (newAnswers = ∅ OR E(po) = ∅) then
13: Obtain successor predications Sp by knowledge ab-

straction and record abstractions in ρ.path.
14: end if
15: for all predications q ∈ Sp do
16: MDFS-VISIT(q, ρ, AQ, GS(D))
17: end for
18: Add ρ to PQ

hop, the number of correct text items retrieved relative to
the total number of unique text items retrieved. For recall,
we measure at each hop, the ratio of the total number of
correct text items retrieved to the total number of correct
text items to be retrieved per question. More formally:

1) Precision: For some arbitrary question Q, precision
is the ratio of the total number of correct text items Dc

Q,l

retrieved from the answer set DQ at path length l, to the total
number of unique text items Du,l retrieved at path length l.

Precision =

∑L
l=1Dc

Q,l∑L
l=1Du,l

(3)

2) Recall: For some arbitrary question Q, recall is the
ratio of the number of correct text items Dc

Q,l retrieved from
the answer set DQ at path length l, to the total number of

text items in the answer set.

Recall =

∑L
l=1Dc

Q,l

| DQ |
(4)

Since many text items that answer arbitrary questions could
not be reached altogether, due either to limitations in pred-
ication extraction of absence of predication in some text
items, we introduce an adjusted recall measure to better
assess the effectiveness of our approach. The adjusted re-
call (Recalladj) discounts text items Dur that cannot be
reached from the total number of text items in the answer
set. The denominator in Equation(4) therefore becomes
| DQ | − | Dur |. Additionally, as the MDFS algorithm
is exhaustive, multiple paths of varying coverage can be
generated for each question. To obtain a best case measure
for precision and recall, we selected for each question, the
path of shortest length that covers the greatest number of text
items. Intuitively, if an expert user traversed such a path, it
would yield the greatest number of answer text items in the
fewest number of transitions.

A. Experiment 1

In the first experiment∗ a text item is the concatenation
of all answer paragraphs in a document. The goal of this
experiment was to ascertain the ability to reach answer text
items without necessarily identifying the correct paragraphs
within them. Table I (Row 1) shows precision and recall
using no abstraction and concept-based text item retrieval.
That is, at each hop, we retrieve only those text items
containing the subject of the predication. Table I (Row 2)
shows the precision and recall statistics using associative
abstraction. Here we observe that the use of associative
abstraction yields high recall, while precision is low. The
overall 82% recall for associative abstraction, compared with
close to 70% for no abstraction and 71% for hierarchical ab-
straction suggests that entities occurring in natural language

∗No entry points exist in the predications graph for two (2) questions
(Q166, & Q187) for Associative Abstraction and Hierarchical Abstraction
in this experiment. Additionally, no entry points for Q177 and Q184 exists
when abstraction is not used abstraction.



Table I
EXPERIMENT 1: AVERAGE PRECISION AND RECALL BY TECHNIQUE

Technique Precision Recall
Absolute Adjusted

No Abstraction (NA) 0.205 0.707 0.846
Associative Abstraction (AA) 0.112 0.822 0.994
Hierarchical Abstraction (HA) 0.120 0.718 0.879

are more frequently connected through associative predicates
rather than hierarchical ones. While intuitively hierarchical
predicates may be contextually relevant, the lower frequency
in their usage appears to limit reachability. Figure 2 also
shows pictorially that many text items are reachable using
associative abstraction, but at low precision. In spite of low
precision, this result confirms that answer text items can be
connected using the predications.

B. Experiment 2

In the second experiment∗, each paragraph is treated as
an individual text item. Table II (Row 1) contains statistics
for the first scenario, in which we retrieved text items based
on the presence of predications in them and without using
abstraction, as outlined in Algorithm 2. This result shows
that while about 49% of the text items retrieved were correct,
only 16.5% of all correct text items were retrieved. While the
adjusted recall is higher, at 22.5% (as expected), still a large
number of correct text items have not been retrieved. Such a
result likely for two reasons: 1) the absence of predications
in text items and 2) the absence of direct connections from
one correct text item to another, since no abstraction is used.

In an attempt to prune the number of non-relevant text
items, we added the condition that text items at each hop
must also contain at least one entity from the original
question in addition to the predication. Table II (Row 2)
shows that for this second case we achieve higher precision
(up to 53.1% from 48.5%) among the text items retrieved,
but at the cost in recall, which falls from 16.5% to 15.7%
We speculate that this loss is because some relevant answer
text items contain related question entities instead of exact
matches or synonyms. Hence, such answer text items would
no longer be reachable under the constraint.

In the third case, in Table II (Row 3), we attempted to
improve recall by performing associative abstraction. This
created a significant increase in recall, from less than 17% to
around 27% in absolute recall (and close to 38% adjusted).
The accompanying decrease in precision is likely because
the abstractions create links to related predications that occur
in many text items in a related context, but which are
ultimately not in the answer set. Table II (Row 4) shows once
again that adding the question-entity constraint improves

∗No entry points (or root nodes) exist in the predications graph for three
(3) questions (Q166, Q184 & Q187) in this experiment. Results are listed
for the remaining 23 questions.

Table II
EXPERIMENT 2: AVERAGE PRECISION AND RECALL BY TECHNIQUE

Technique Precision Recall
Absolute Adjusted

No Abstraction(NA)+Predication(P) 0.485 0.165 0.225
NA+P+Question Concepts(QC) 0.531 0.157 0.215
Associative Abstraction(AA)+P 0.317 0.271 0.377
AA+P+QC 0.405 0.234 0.330
Hierarchical Abstraction(HA)+P 0.497 0.174 0.239
HA+P+QC 0.543 0.166 0.230

precision (from 31.7% to 40.5%) but lowers recall (down
from 27.1% to 23.4%) possibly for reasons discussed above.

Similar trends are evident after applying hierarchical ab-
straction shown in Table II (Row 5). A slight improvement in
recall over no abstraction can be observed (i.e., from 16.5%
and 15.7% to 17.4%). However, applying the question-entity
constraint shows a decrease in recall in Table II (Row 6),
from 17.4% to 16.6%. This gives rise to an an expected
increase in precision (from 49.7% to 54.3%). Figure 3 shows
pictorially the individual absolute and adjusted precision and
recall for the scenario described in Table II (Row 1). Five
questions have above 90% recall but for all others, less than
half the correct number of text items were retrieved.

Collectively our results highlight some important points.
First, they indicate that ambiguity in written language im-
poses a major bottleneck on knowledge-driven exploration.
Second, they establish that limitations in predication ex-
traction methods further affect the accuracy and scope of
our approach. Finally, the quality of background knowledge
may also be a limiting factor when sufficient context does
not exist or cannot be distilled from the knowledge base.
Such difficulties are particularly evident when searching
for fine-grained text items. It may be the case that finding
answer text items at this level of granularity is inherently
difficult. To support this claim, it is noteworthy that the Mean
Average Precision (MAP) values reported by the TREC 2006
challenge [14] are also rather low.

Nonetheless, experiment 1 shows that our knowledge-
driven approach is more applicable for text items of coarser
granularity. It shows that ideally, an expert user might be
able to leverage the predications to transition from document
to document without the need for query reformulation.
Concurrently however, it raises the fundamental question of

Figure 4. Predications in a Sample Path for Question 184

whether such paths make sense. Figure 4 shows one path
that does. For the question, How do mutations in the Pes



Figure 3. Precision-Recall using No Abstraction

gene affect cell growth? from the literature we observe that:

“The contribution of pescadillo to the regulation of cell
growth was further substantiated by the identification and
characterization of temperature-sensitive pescadillo mutant
yeast strains. Yeast expressing mutant pescadillo displayed
growth arrest in the G1 or G2 phase of the cell cycle when
shifted to a nonpermissive temperature.” (Source: PMID11071894)

The path in Figure 4 shows that Pescadillo affects rRNA
Processing which may affect the S Phase, since the WDR12
Gene affects Cell Physiology with which rRNA Processing
coexists. However, the S Phase or synthesis phase of the cell
cycle is also a process of Aneuploidy which has negatively
effect on cell growth. Since DNA replication is known to
occur between he G1 and G2 phases of the S Phase, mu-
tations of Pescadillo could lead to G1 Phase arrest thereby
showing growth arrest. By confirmation in the text, a specific
temperature sensitive mutant experiences this condition.

VI. RELATED WORK

Many recent advances in keyword-based retrieval emerged
from the annual Text REtrieval Conference (TREC). Many
state-of-the-art algorithms from TREC conferences use so-
phisticated heuristics to expand initial user queries either
by using a background knowledge base (KB), such as
WordNet or UMLS, or by employing pseudo feedback [15].
While these improvements in query expansion lead to more
effective document retrieval, their overall pertinence [16] to
the larger information need is arguable. That is, relevance
of a document to a search query does not often readily
translate to answers that satisfy the visceral information need
of the user. Therefore, the result of these search approaches
is typically a long list of relevance-based ranked documents
that still leaves users with the task of searching-and-sifting
through them to find answers.

PubMed4 is a web-based tool for searching the MEDLINE
database of biomedical citations (most include abstracts)

4http://www.nlm.nih.gov/pubs/factsheets/pubmed.html

from more than 5000 journals, developed and maintained by
the National Center for Biotechnology Information (NCBI).
It returns a ranked list of results using synonym-based query
expansion with a bias towards recent results and inherits the
disadvantages of keyword-based search. To address this, in
searching biomedical literature, well known KBs are used
to cluster results into categories and to provide faceted
drill-down based on hierarchies of categories. For example
in GoPubMed [17], the GO has been used effectively to
annotate entities in PubMed abstracts and filter them with
GO hierarchy concepts as facets. XplorMed [18] and Mc-
SiBy [19] are two other systems that use MeSH classifi-
cations to cluster search results. The KBs used in these
approaches like the GO or MeSH headings are fairly static
and represent well known and widely accepted knowledge in
biomedical domains and do not encompass recent findings
and cutting edge research. While they alleviate the burden
of perusing long result lists, they do not directly address the
pertinence problem discussed earlier when seeking informa-
tion to a particular question. In this paper we propose using
semantic predications extracted from scientific literature as
the backbone that guides exploratory search.

In ongoing research, we developed Scooner [20], [21],
which is a concept-based, user-driven approach to explo-
ration. This approach is predicated on the view of a doc-
ument, not only as a bag-of-words both also as a set-of-
entities. Background knowledge is then used to connect the
entities anchored in text to support document to document
transition. Unlike Scooner, this work uses predications in-
stead of entities, largely because predications capture more
relevant context than connecting documents based on enti-
ties.

VII. CONCLUSION

In this paper, we presented a novel knowledge-driven
framework, that provides an alternative to traditional QA
approaches for finding documents that answer complex
information needs. Our approach is further novel because it
also has implications on LBD. Through the use of semantic
predications we showed that a mechanism for transitioning



from one document to another can be achieved. Specifically,
we showed that assertions extracted from biomedical litera-
ture can achieve high recall in retrieving relevant text items
at coarse granularity. The use of hierarchical and associative
abstraction using background knowledge can further im-
prove recall but at a loss in precision. This loss likely stems
from predications obtained through abstraction, that occur in
many documents but are not of critical relevance to answer
set documents. We plan in future, to develop techniques to
increase precision by ranking and pruning both predications
and text items.

We also showed that it is difficult to connect text items
that provide exact answers to specific questions with high
recall. This is largely because the predications necessary
to connect various text items may not be present in the
natural language text, for a variety of reasons. Such reasons
include ambiguities in written language as well as nuances in
expression. Additionally, the limitations of SemRep (which
has 78% precision and only 50% recall) negatively impacts
the recall in our experiments.

Ultimately, our focus in this work was on determining
whether documents that answer complex information needs
can be reached from one another, given the absence of hyper-
links. We showed that exploration among such documents is
possible by leveraging semantic predications and knowledge
abstractions through the use of background knowledge. In
future, we will address issues of 1) ranking, 2) quality
of paths, 3) ease of use of an implemented, and 4) the
scalability of the underlying algorithms, for large datasets.
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